
Machine learning is increasingly recognized as a 
valuable tool in forecasting Earth-system dynamics 
[1,2,3]. 

Forecasting the chaotic dynamics of such systems 
relies on capturing geospatial relationships, yet many 
machine learning models overlook the incorporation of 
spatial features into their forecasting approaches. 

This research employs graphical neural networks, a 
machine learning architecture that explicitly encodes 
geospatial relationships, for forecasting chaotic 
spatiotemporal data. 

Encoding Spatial Relationships With Graph Neural 
Networks For Better Earth-System Forecasts Around the World in 36 Nodes: 
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Graph Neural Networks Results Next Steps
To better evaluate the potential 
contributions of GNN, a number of 
additions can be made, including: 

● replacing MLP layers in the GNN with 
recurrent cells to make results more 
comparable to common existing time 
series forecasting approaches

● Conducting more hyperparameter 
tuning with multiple chained 
GraphNet Blocks and trained on 
longer rollouts

The Lorenz 96 model [4] is a 
surrogate model of the 
atmosphere which is 
chaotic yet simplified.

It consists of the following 
differential equations: 

In our simulation, we 
use the coupled 
two-system model:

● K = 36 nodes 

● F = 8 forcing

● h = 1 coupling

Each unit of time in the 
simulation equals to 
roughly 5 days, based 
on error-doubling rate.

Graph neural networks (GNNs) are a generalization of 
common convolutional neural networks which can 
operate over arbitrary graph structures.
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The longitudinal plots of the predictions, 33 hours into 
the future, suggest the graph neural network is able to 
capture the chaotic dynamics of the Lorenz 96 model. 

The prediction difference from the Lorenz 96 data 
reveals the presence of some systematic errors rather 
than purely random noise. 
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Error Metrics
Mean Squared 
Error 0.101
Mean Bias -0.029
Mean Error 0.221
RMSE 0.305
Centered RMSE 0.301
Correlation 
Coefficient (R) 0.954
Index Of 
Agreement 0.934

Predictions are made autoregressively from a single 
data point in time. The predictions occur over four steps 
of 3 hours each, starting 24 hours into the future and 
rolling out to 33 hours into the future. 
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The Lorenz 96 
graph structure is 
preserved using 
edge and node 
features. Each data 
point is a graph with 
36 nodes and 180 
edges.

X Yv
i
 =

Node feature: 

0

1

2

-1

-2

Edge feature:

Left 2nd neighbor

Left 1st neighbor

Self

Right 1st neighbor

Right 2nd neighbor

e
k
 = 

Our GNN is a variation of the GraphNet architecture [5], 
consisting of two updating steps: one for edge features 
and one for node features. 

Edge update:
Edge features are passed through the edge update 
function, an MLP, and aggregated by summation. 

Node update
Node features and aggregated edge features are 
passed through the node update function, an MLP. 
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